Forskjellen mellom korrelasjon og regresjon er et av de vanlige spørsmålene i intervjuer. Dessuten har mange mennesker tvetydighet i å forstå disse to. Så ta en fullstendig lesning av denne artikkelen for å få en klar forståelse av disse to.
Sammenligningstabel
Grunnlag for sammenligning | Sammenheng | regresjon |
---|---|---|
Betydning | Korrelasjon er et statistisk mål som bestemmer samarbeidsforhold eller forening av to variabler. | Regresjon beskriver hvordan en uavhengig variabel er numerisk relatert til den avhengige variabelen. |
bruk | Å representere lineært forhold mellom to variabler. | Å passe på en best linje og anslå en variabel på grunnlag av en annen variabel. |
Avhengige og uavhengige variabler | Ingen forskjell | Begge variablene er forskjellige. |
indikerer | Korrelasjonskoeffisienten angir i hvilken grad to variabler beveger seg sammen. | Regresjon indikerer virkningen av enhetsendring i den kjente variabelen (x) på estimert variabel (y). |
Objektiv | For å finne en numerisk verdi som uttrykker forholdet mellom variabler. | Å estimere verdier av tilfeldig variabel på grunnlag av verdiene for fast variabel. |
Definisjon av korrelasjon
Begrepet korrelasjon er en kombinasjon av to ord 'Co' (sammen) og relasjon (forbindelse) mellom to mengder. Korrelasjon er når det på tidspunktet for studiet av to variabler blir observert at en enhedsendring i en variabel blir gjengitt av en tilsvarende endring i en annen variabel, det vil si direkte eller indirekte. Ellers sies variablene å være ukorrelert når bevegelsen i en variabel ikke utgjør noen bevegelse i en annen variabel i en bestemt retning. Det er en statistisk teknikk som representerer styrken av forbindelsen mellom par av variabler.
Korrelasjonen kan være positiv eller negativ. Når de to variablene beveger seg i samme retning, dvs. en økning i en variabel vil resultere i tilsvarende økning i en annen variabel og omvendt, så anses variablene å være positivt korrelert. For eksempel : fortjeneste og investering.
Tvert imot, når de to variablene beveger seg i forskjellige retninger, på en slik måte at en økning i en variabel vil føre til en nedgang i en annen variabel og omvendt, er denne situasjonen kjent som negativ korrelasjon. For eksempel : Pris og etterspørsel av et produkt.
Tiltakene av korrelasjon er gitt som under:
- Karl Pearsons produkt-moment korrelasjonskoeffisient
- Spearmans rangkorrelasjonskoeffisient
- Punktdiagram
- Koeffisient av samtidige avvik
Definisjon av regresjon
En statistisk metode for å estimere endringen i metriske avhengige variabler på grunn av endringen i en eller flere uavhengige variabler, basert på det gjennomsnittlige matematiske forholdet mellom to eller flere variabler, kalles regresjon. Det spiller en viktig rolle i mange menneskelige aktiviteter, da det er et kraftig og fleksibelt verktøy som brukes til å prognose tidligere, nåtid eller fremtidige hendelser på bakgrunn av tidligere eller nåværende hendelser. For eksempel : På grunnlag av tidligere poster, kan en virksomhets fremtidige fortjeneste estimeres.
I en enkel lineær regresjon er det to variabler x og y, hvor y avhenger av x eller si påvirket av x. Her kalles y som avhengig, eller kriteriumvariabel og x er uavhengig eller prediktorvariabel. Regresjonslinjen av y på x er uttrykt som under:
y = a + bx
hvor, a = konstant,
b = regresjonskoeffisient,
I denne ligningen er a og b de to regresjonsparametrene.
Viktige forskjeller mellom korrelasjon og regresjon
Poengene som er gitt nedenfor, forklarer forskjellen mellom korrelasjon og regresjon i detalj:
- Et statistisk mål som bestemmer samarbeidsforholdet eller foreningen av to mengder er kjent som korrelasjon. Regresjon beskriver hvordan en uavhengig variabel er numerisk relatert til den avhengige variabelen.
- Korrelasjon brukes til å representere det lineære forholdet mellom to variabler. Tvert imot brukes regresjon til å passe den beste linjen og anslå en variabel på grunnlag av en annen variabel.
- I korrelasjon er det ingen forskjell mellom avhengige og uavhengige variabler, dvs. korrelasjon mellom x og y er lik y og x. Omvendt er regresjonen av y på x forskjellig fra x på y.
- Korrelasjon indikerer styrken av tilknytning mellom variabler. I motsetning til regresjon gjenspeiler effekten av enhetsendringen i den uavhengige variabelen på den avhengige variabelen.
- Korrelasjonen tar sikte på å finne en numerisk verdi som uttrykker forholdet mellom variabler. I motsetning til regresjon hvis mål er å forutsi verdier av den tilfeldige variabelen på grunnlag av verdiene for fast variabel.
Konklusjon
Med ovennevnte diskusjon er det tydelig at det er stor forskjell mellom disse to matematiske konseptene, selv om disse to blir studert sammen. Korrelasjon brukes når forskeren ønsker å vite at om variablene under studien er korrelerte eller ikke, hvis ja, hva er styrken av deres tilknytning. Pearsons korrelasjonskoeffisient regnes som det beste forholdet til korrelasjon. I regresjonsanalyse er det etablert et funksjonelt forhold mellom to variabler for å gjøre fremtidige fremskrivninger på hendelser.