
På den annen side, hvis hver hendelse er upåvirket av andre hendelser, kalles de uavhengige hendelser . Les hele artikkelen nedenfor for å få bedre forståelse for forskjellen mellom gjensidig eksklusive og uavhengige hendelser.
Sammenligningstabel
Grunnlag for sammenligning | Gjensidig eksklusive hendelser | Uavhengige hendelser |
---|---|---|
Betydning | To hendelser sies å være gjensidig eksklusiv, når deres forekomst ikke er samtidig. | To hendelser sies å være uavhengige, når forekomsten av en begivenhet ikke kan kontrollere forekomsten av andre. |
Innflytelse | Forekomst av en begivenhet vil føre til at den andre ikke forekommer. | Forekomst av en begivenhet har ingen innflytelse på forekomsten av den andre. |
Matematisk formel | P (A og B) = 0 | P (A og B) = P (A) P (B) |
Setter i Venn-diagram | Overlapper ikke | overlapp |
Definisjon av gjensidig eksklusiv begivenhet
Gjensidig eksklusive hendelser er de som ikke kan skje samtidig, dvs. hvor forekomsten av en begivenhet resulterer i ikke-forekomst av den andre hendelsen. Slike hendelser kan ikke være sanne på samme tid. Derfor skjer en enkelt begivenhet som skjer ved en annen begivenhet umulig. Disse er også kjent som ujevne hendelser.
La oss ta et eksempel på å kaste en mynt, hvor resultatet enten ville være hodet eller halen. Både hode og hale kan ikke forekomme samtidig. Ta et annet eksempel, anta om et selskap ønsker å kjøpe maskiner, som det har to alternativer Maskin A og B. Maskinen som er kostnadseffektiv og produktiviteten er bedre, vil bli valgt. Godkjennelsen av maskin A vil automatisk resultere i avvisning av maskin B og omvendt.
Definisjon av uavhengig hendelse
Som navnet antyder, er uavhengige hendelser hendelsene, hvor sannsynligheten for en begivenhet ikke styrer sannsynligheten for forekomsten av den andre hendelsen. Det som skjer eller ikke skjer ved en slik begivenhet har absolutt ingen effekt på hendelsen eller ikke-hendelsen av en annen begivenhet. Produktet av sine egne sannsynligheter er lik sannsynligheten for at begge hendelsene vil oppstå.
La oss ta et eksempel, anta at hvis en mynt kastes to ganger, hale i første sjanse og hale i den andre, hendelsene er uavhengige. Et annet eksempel på dette, Anta at hvis en terning rulles to ganger, 5 i første sjanse og 2 i sekundet, er hendelsene uavhengige.
Hovedforskjell mellom gjensidig eksklusive og uavhengige hendelser
De betydelige forskjellene mellom gjensidig eksklusive og uavhengige hendelser er utarbeidet som under:
- Gjensidig eksklusive hendelser er de hendelsene når deres forekomst ikke er samtidig. Når forekomsten av en hendelse ikke kan kontrollere forekomsten av andre, kalles slike hendelser uavhengig hendelse.
- Ved gjensidig eksklusive hendelser vil forekomsten av en begivenhet resultere i at den andre ikke forekommer. Omvendt, i uavhengige hendelser, vil forekomst av en begivenhet ikke ha noen innflytelse på forekomsten av den andre.
- Gensidig eksklusive hendelser er representert matematisk som P (A og B) = 0 mens uavhengige hendelser er representert som P (A og B) = P (A) P (B).
- I et Venn-diagram overlapper ikke settene hverandre, når det gjelder gjensidig eksklusive hendelser, mens om vi snakker om uavhengige hendelser overlapper settene.
Konklusjon
Så med ovennevnte diskusjon er det helt klart at begge hendelsene ikke er like. Videre er det et poeng å huske, og det er hvis en hendelse er gjensidig eksklusiv, så kan den ikke være uavhengig og omvendt. Hvis to hendelser A og B er gjensidig eksklusive, kan de uttrykkes som P (AUB) = P (A) + P (B), men hvis de samme variablene er uavhengige, kan de uttrykkes som P (A∩B) = P (A) P (B).